organized in sets of two characters 43, with an even number of characters around cylinder 27. Aperture 39 through which the user feels the Braille characters on display surface 33 of cylinder 27 is preferably of a width to allow no more than two characters to be felt at one time. With a six-dot Braille code, up to twelve actuators are used to control two character cells (depending upon design choice). For eight-dot code, up to sixteen actuators are used. At any given instant, all two character cell pairs around cylinder 27 are displaying the same pattern. Therefore, only twelve actuators are needed to control all cells 41 on cylinder 27, with the motion from each actuator distributed to the corresponding Braille dot mechanism in all cells. The actuators are controlled by a computational device so that what the user feels through aperture 39 is a string of Braille characters. The actuators must therefore be fast enough to change the pattern of dots on a serial basis to provide the desired reading speed. The method of distribution of actuator activity to its multiple corresponding dots may be by flexible cable directed through a channel, by solid linkages, or by a 20 combination of the two. The greater the number of cells (character pairs) on cylinder 27, the flatter reading surface 33 will seem to the user, but such an increase will also increase the size of the device, and the force the twelve actuators must provide to operate all the cells. The number 25 of cells on cylinder 27 will be set by a design compromise of these factors. As illustrated in FIG. 2, in an embodiment employing external actuator assembly 45 statically positioned at a station 47 of housing 37, cylinder 27 contains no active 30 components. The pattern of dots making up Braille characters is set in cooperation with surface characteristic 31 of cylinder 27 by external actuators 49 in assembly 45 (only one shown) before they move into reading aperture 39 for detection by the user. In this embodiment, six dots (for 35 six-dot Braille code, arranged in two columns of three dots each) form each Braille cell (i.e., one character in six-dot Braille), and dots are arranged around display surface 33 in three endless rows (see FIG. 1 for an example of this Braille code eight dots arranged in two columns of four dots each form a cell, there being four endless rows arranged around display surface 33). This allows the reader apparatus of this invention to operate with as few as three actuators 49 in the assembly creating a stream of Braille characters at 45 reading aperture 39 as relative motion between surface 33 and actuator station 47 (in a direction substantially parallel to one another) continues. This represents a substantial reduction compared to the hundreds of actuators that may be required for existing readers (a slight increase in the number, 50 for example to six actuators, may allow slower actuators to be used, by splitting the task of setting the dots). There are several ways by which the Braille dots may be formed at display surface 33 (i.e., defining a selected surface characteristic 31) of cylinder 27 by actuators 49. The indi- 55 vidual dots may be defined by numerous (one for each dot) spring-loaded push-on, push-off pin devices mounted in openings (corresponding to the dots) in cylinder 27 such as are used in certain push-button switches or in retractable ball-point pens. A push from an actuator shaft 51 causes an 60 individual pin to switch state, from "in" (not extended from the cylinder surface) to "out" (extended from the cylinder surface), or vice versa. The controlling device preferably keeps track of the status of every dot in every cell on the cylinder, and when refreshing the text either reverses the 65 status of dots or allows them to remain unchanged on a dot-by-dot basis, according to the requirements of the new text (though refreshing could occur merely by returning all pins to a default state after reading, for example the unextended position, by mechanical means before resetting by actuators 49 as discussed hereinafter). Other passive mechanical means of forming the dots could be utilized. For example, pins shaped as small cylinders or spheres which are flattened on one side and which can be rotated about individual axes in openings in the cylinder by the actuators could be utilized. The cylinders or spheres would be shaped and contained so that rotation while passing across the user reading area and when being contacted by the user's fingers is prevented. In yet another embodiment, the selected surface characteristic 31 of cylinder 27 can be a mechanically plastic material covering outer surface 33 of cylinder 27 and into which actuators 49 press a pattern of Braille text characters as it moves past, and which is capable of such character retention through reading area (or aperture) 39. After passing reading area 39, rollers or similar such devices are provided to flatten (and thus reshape so that no impressions remain) the surface of the plastic material, thereby providing a blank, unwritten, surface 33 for new text to be written. The plastic material must be sufficiently stiff to permit reading without undue deformation of the material, but sufficiently pliable to permit writing, flattening, and rewriting. In still another embodiment, shown in FIG. 3, the Braille dots are externally set in a mechanically plastic material as described above with respect to FIG. 2, but instead of being set on surface 33 of wheel 27, they are set on surface 55 of belt 57 moving around two wheels 59 and 61. Instead of one or two characters being exposed at any given time at reading aperture 39, several characters, up to an entire line of Braille text, are exposed. Back plate 63 keeps belt 57 from flexing while the user reads the Braille at reading aperture 39. This method sacrifices some simplicity for the ability to display an entire line at a time. The user may choose to operate such a display in any of several different modes. The display can be configured to arrangement of rows, it being understood that for eight-dot 40 update continuously and with wheels 59/61 rotating continuously. The user places a finger where the text first appears, and stops the motion of the display in order to re-read characters that have just moved past the finger. Alternatively (depending upon reading aperture size), the display can be configured to update an entire line at a time, and is then stopped while the user reads the entire line. When deploying the display apparatus of this invention in this mode, belt 39 can be made wider, and more actuators 49 can be added, so more than one line can be displayed at a time if desired. With a sufficiently long line of actuators and a sufficiently wide belt, an entire page of Braille text can be updated and displayed at once. > Moreover, where a multiple-line extended Braille text display is desired, separate belts 57 (and drive wheels 59/61) may be provided for each line of text. This would allow for utilization of much slower actuators 49. While the user is reading one line, other lines are slowly being updated. Satisfactory throughput can be provided even if the individual actuator groups in assembly 45 (triads, for example, for six-dot Braille) produce Braille text at a fraction of the user's reading speed. > FIG. 4 shows an example of one method of implementation of refreshable Braille reader 65 in accord with the various embodiments of this invention. This implementation includes interface and control logic 69, power electronics 71 to drive the transducers (actuators) and rotation of Braille wheel 27, and physical user interface 73. The physical user